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The paper presents a mixed wavelet/spectral Chebychev method for solving the
unsteady 2D Stokes equations in the vorticity-stream function formulation with pe-
riodicity condition in one direction. After an appropriate time discretisation of the
equations, one has to solve at each time step a stationary Stokes-like problem. A
capacitance matrix method is used to eliminate the problem of boundary condi-
tions. This leads to solving a series of Helmholtz problems. The spatial discretisation
makes use of the wavelet method in the periodic direction and the spectral collocation
Chebychev method in the non-periodic direction. The resolution of the discrete
Helmholtz problem is done by means of the diagonalisation technique in the non-
periodic direction. The system then splits into a sequence of one dimensionnal peri-
odic Helmholtz problems which are efficiently inverted using FFTs. Numerical tests
show both the stability and the accuracy of the methagli99s Academic Press

1. INTRODUCTION

In this paper we develop a method which combines the wavelet method in one d
tion and the spectral Chebychev method in another direction for solving incompres
unsteady Stokes equations. There have been numerous computations of incompre
flow using mixed methods such as finite difference/spectral methods which can be f
in the literature. In a framework strictly spectral, when periodicity conditions are assul
in some coordinates space, a mixed spectral Fourier/Chebychev method that uses F
expansion in the periodic direction and the Chebychev method in the other directioniis «
monly used. Recently, a new numerical concept was introduced and is gaining incre
popularity. The method is based on the expansion of functions in terms of a set of |
functions called wavelets. Wavelets are a new family of functions which constitute a k
of L2(R). They have many attractive features: orthogonality, compact support, arbit
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regularity, and simplicity since they are obtained by dilation and translation of a sing
function. In data analysis where it was first applied, the wavelet transform was found
give better results than the classical Fourier transform. Wavelets combine the advan
of both finite-difference (or finite elements) and spectral methods: good localisation e
spectral accuracy in regard to the degree of regularity of the basis functions. There
one expects that the wavelets method will be well suited for situations where class
methods such as finite differences do not converge and where Fourier method doe:
apply.

The flow is assumed to be bidimensional, with periodicity conditions in one directio
The equations are considered in the vorticity-stream function formulation. This formulati
automatically satisfies the incompressibility condition and allows one to reduce the num
of equations to be solved. However, the nature of the boundary conditions is troubles
since they imply the specification of both the stream function and its normal derivative |
none for the vorticity. Various ways are usually used to tackle this difficulty; the commc
way consists of deriving boundary conditions for the vorticity by manipulating the Ne
mann boundary conditiodyy | and the relatiom = —V?2y. This technique has been used
in finite differences methods or finite elements methods as well as in spectral methods
Quartapelle [6] and Weinaet al. [5] for discussions on the basic issues on the numeric:
treatment of the vorticity-stream function equations). Glowinski and Pironneau [17] studi
the relation between the tracewfind the normal derivative af on the boundary and they
introduced a treatment of boundary conditionsdolJsing a finite elements approximation
they deduced a linear systetw | = d, ¥ |- for the trace ofv on the boundary via the solu-
tions of Dirichlet problems for- V2. The method was further perfected by Desal.[18].
This treatment of boundary conditions feris usually called the influence matrix method.
In spectral approximation the influence matrix (Ehrenstein and Peyret [12]) is the metl
most frequently used for solving the equations of vorticity-stream function. An alternati
to the influence matrix method is the vorticity integral method in which boundary co
ditions are derived for the vorticity by using Green’s identities (Quartapelle, [6]; Nguye
et al. [8]). In the present wavelet/spectral method, we use the influence matrix methoc
solve the problem. The influence matrix, also called the capacitance matrix method,
been widely used to solve linear elliptic problems where boundary conditions present s
difficulties. For instance it is commonly associated with the domain imbedding technic
for solving problems in complex geometries (Garba [2]). Itis also used for situations wh
boundary conditions are not available for all the unknowns, particularly in incompre:
ible flow calculations. In this context, the influence matrix method has been used first
Kleiser and Schumann [7] in the spectral calculation of 3D flow in primitive variables wit
two directions of periodicity. Later the method was extended by LerQand Aziary de
Rocquefort [10] and Tuckerman [9] for situations with more complicated boundary co
ditions. In the vorticity-stream function formulation, Varetlal.[11] and Ehrenstein and
Peyret [12] developed a capacitance matrix method to overcome the lack of boundary
ditions for the vorticity. The capacitance matrix we use here is similar to that presen
Ehrenstein and Peyret [12].

In Section 2, we present the Stokes-equations and their time discretisation. A three-I
scheme which provides a second order accuracy is used to discrete the problem. Th
each time step, one has to solve a stationary Stokes-type problem.

The method for solving this problemis presented in Section 4. It makes use of the influe
matrix technique. The influence matrix method leads to solving a series of Helmhc



A MIXED SPECTRAL/WAVELET METHOD 299

problems with periodicity condition in one Direction and Dirichlet boundary conditions
the other direction.

Section 3is devoted to the numerical resolution of the Helmholtz problem. In the direc
of periodicity, the discretisation is done in the basis constituted by the translates anc
dilations of the Daubechies scaling function. We present two methods for the wav
discretisation: the first method is of collocation kind (Garba [3]) and the second is bz
on the Galerkin method (Amaratunga and Williams [4] and Qian and Weiss [19, 20])
the non-periodic direction the discretisation is done in the collocation Chebychev metl
The system of equations arising from the wavelet/collocation Chebychev discretisatic
inverted by applying first the diagonalisation technique in the non-periodic direction. -
problem is then split into a series of one-dimensional Helmholtz equations discretise
the wavelet method. The solution of these problems is efficiently obtained by resortin
FFTs.

2. THE STOKES EQUATIONS

The flow is assumed to be bidimensional in the plane/f and periodic in the direction.
The unsteady Stokes equations can be conveniently written in the vorticity-stream func
formulation as

dow —vVew = f in D (1)
VY 4+w=0 inD )

with boundary conditions in thg direction given by

y=g onl 3)
dy=h onl (4)

and periodic boundary conditions in tkelirection.
The constanv in (1) is the viscosity. The vorticityp and the stream functiogr are
related to the velocity fiel& = (u, v) by

w=08v—dU,  U=dyp, v=—0d. (5)

From the initial conditionV (0) = V; prescribed for the velocity, an initial condition ded-
uced for the vorticity variable (t = 0) = wp = dxvg — dyUp. The domainD and boundary
" are defined by

D={(x,y),0=x<1-1<y=<l (6)
I'={(x,-1),0<x<1}U{(x,1),0<x <1}. )

The vorticity equation (1) is discretised in time through the scheme

3wn+l — 4" + wn—l

At _ UVZer—l — fn+1’ (8)
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which provides a second order accuracy in time. Equation (2) of the stream function :
the boundary conditions (3)—(4) are discretised in an implicit manner

vzlp_rH»l + wn+1 =0 (9)
wf‘H—l — gn+1 (10)
8y1//n+l — hn+l. (11)

The parameteAt in (8) denotes the time step and the quangitystands for the approxima-
tion of the functionp at timet, = nAt. Then at each time step one has to solve a stationa
Stokes-like problem

VanJrl _ O_wthl — fn,nfl in D (12)
Vil L o™l =0 inD (13)
with boundary conditions (10)—(11) and periodicity conditiorxin
In (12) the parameter = 3/(2At) and the right hand sidé™"~* contains the forcing
term f"+1 and all the quantities coming from the previous time st@ps 1) At andnAt.
The main difficulty in solving the problem (10)—(13) numerically arises from the natul
of the boundary conditions: two boundary conditions are prescribed for the stream func

while no boundary conditions are available for the vorticity. We use the capacitance ma
method to circumvent this difficulty.

3. THE HELMHOLTZ SOLVER

Because the numerical solution of the Stokes-like problem (10)—(13) entails solvin
sequence of Helmholtz problems, we present first the numerical method for solving
Helmholtz problem. Let us consider the bidimensionnal Helmholtz equation

Viu—ou=f, (x,y)eD, (14)

whereo is a non-negative constant and the domiis defined by (6). We assume peri-
odic boundary conditions in the-direction and in they-direction we consider the mixed
Dirichlet-Neumann boundary conditions
a_U(x, —=1) + B_odyu(x, =1) = g~ (X) (15)
. U(X, 1) 4+ Broyu(x, 1) = g.(X), (16)

where the coefficients_, ., B_, andg,. satisfy the conditions
Ol_ﬂ_ > 0, Ol+ﬂ+ > 0. (17)

3.1. Numerical Discretisation

The numerical approximation of the Helmholtz problem (14)—(16) makes use of t
wavelet method in the direction of periodicity and the collocation Chebychev method in't
non-periodic direction. The family of Daubechies wavelets is used to implement the meth
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The approximation is done on the basis of the translates and dilations of the Daube
scaling function.

The Daubechies correlation function (Daubechies [1]) Wthon-vanishing “filter co-
efficients” satisfies the scaling relation

N-1

() = hp(2x — k). (18)

k=0

The parameteN will be referred to as the degree of the scaling functoin relation (18)
the “filter coefficients™hy, k=0, ..., N — 1, are chosen so that the scaling functiphas
some desirable properties. The functiohas support in interval [N — 1] and it induces
a multiresolution analysis dn?(R), i.e., a nested sequence of functional spates < Z,
such that the union is denselid(R), and for eachj, the sequencey; kjkez defined by

@i k(x) = 212p(21/2x — k) (19)

forms an orthogonal Riesz basis #r. Now choosing an approximation spagg a function
u belonging toL?(R) is expanded in the basis (19) at the scile

Us(0) =Y Gpak(X). (20)

kez

The coefficientgcg }kez define the functiom; in the wavelets space. We will use the appel
lation “wavelets coefficients” to designate these coefficients even though the approxim:
uses the scaling functions basis.

Now one needs some techniques for evaluating the wavelets coefficients. In the per
situation this can be done by considering the values of the function at a set of discrete p
279k, k=0, ..., 27 — 1. Writing the expansion (20) at these points, and taking into accot
the periodicity condition, one gets a linearly independent system of ordethih links
the wavelet coefficients to the values of the functigrat the discrete points.The operatol
of the system is a circulant operator with kerie) = (0, ¢1, ..., ¢n—2,0, ..., 0), where
@i = ¢(i). Thus the physical values of the function are obtained by taking the convolut
product of the kerneK,, and the vector of the wavelet coefficients

K,*C=U (21)

since multiplication of a vector by a circulant matrix is the same as a convolution betw
the vector and the first column of the matrix. The convolution product in (21) may
efficiently done by resorting to FFTs. For this we first take the Fourier transform of (21,
obtain

Fi(Ky) - F(C) = F(U) (22)

since a convolution in physical space is equivalent to a term by term product in FoL
space. The notatiafy is used for the coefficients in the Fourier space. Conversely one g
the wavelet coefficients from the physical values by

F(C) = FuU)/Fi(Ky). (23)
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Remark. All the Fourier coefficientsFi(K,) are different from zero by virtue of the
reversibility of the discrete transformation (21).

Now coming back to the bidimensional problem (14), we use the wavelet basis descri
above to approximate the solution in the periodic direction and in the non-periodic direct
we use the Chebychev approximation.

As in the previous setting, the scale used.ig he functionu(x, y) is expanded in th&
direction in the basis (19)

U y) = > dk(Y)pak(X). (24)

kez

where this time the wavelet coefficientg depend upon the variabie It is convenient to
make the variable transform= 27 x so that the expansion (24) becomes

U@z y) =2"2> " p(y)pz - K. (25)

kez

In the same way, the forcing terrh is expanded in the basis (19). Now substituting the
expansion ofi and f in Eq. (14) one gets

Y 2Zhe" 2=+ D> g WeE—k -0 Y $(YeE—k

kez kez kez

=> fuyez-k. (26)

kez

The same substitution is done in the boundary conditions (15) and (16) to obtain respecti

Y (=D —K) + B> ¢ (-Dpz—k => Goz-k (27

kez kez kez

> dDez—K + .Y ¢ De-k = Glez-k.  (28)

kez kez kez

Thus the projection of (14)—(16) in the wavelet space results in the system of Egs. (26)—(
We use two different techniques to discretise this set of equations in ¥heable: the
wavelet collocation method and the wavelet Galerkin method. Both methods are then ¢
pled with a collocation Chebychev discretisation in ghdirection. The mixed wavelet
collocation/collocation Chebychev will be referred to as the WC/CC method and the wave
Galerkin/collocation Chebychev as the WG/CC method. These techniques are present
the following subsections.

3.1.1. The wavelet collocation/Chebychev collocation methdée present here the
discretisation of (26)—(28) in the WC/CC method. First the interval [0, 1] is discretised in
the dyadic points

=2, i=0...,N—1, (29)
where N, =27. The collocation method consists in writing the equations at the set

discrete points, which amounts to writing Eqgs. (26)—(28) at the integer pomts i,
i=0,..., Ny —1. Here we don't need to expand the forcing term in the wavelet spa
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in Egs. (26)—(28) since only their physical values are needed. Expressing the differe
equations (26) at the integer points, one gets the semi-discrete system of equations

A dNE + > Wik —0 > Wik = Fxi, ), (30)

kez kez kez

whereg;_x = ¢ (i — k) andg{_, =¢" ([ —K).
In a similar way the boundary conditions (27) and (28) are written at the integer po
Z,0 <i < Ny —1, to obtain respectively

a Y dDgik+B-Y ¢ Dei k=9 (i, 1) (31)
kez kez
and
ar Y Do+ B Y ¢ Dgik=g"(x, . (32)
kez kez

The system (30) together with the boundary conditions (31)—(32) constitutes a sy
of second order ordinary differential equations for the wavelets coefficignid/e now
introduce the discretisation of these equations ithis is done in the Chebychev collocation
method. The intervalf1, 1] is discretised into the collocation points

Yj = cogjm/Ny), j=0,...,Ny. (33)

The points (33) are the Gauss—Lobatto points. They are the collocation points r
frequently used in spectral Chebychev methods because they not only guarantee a
convergence but also allow the use of FFTs.

We are then looking for a polynomial of degrisig

Ny

Py = ¢ Ti(y).

j=0

whereT; is the Chebychev polynomial of degreeFor a non-negative integeithe discrete
values of derivative®™ are related to the discrete values of the funcidoy the relation

¢ (yj) = Z diYe (). (34)

The coefficientsdj(f‘,) are the entries of the discrete approximation for the derivative of orc
nin the collocation Chebychev method. Then writing (30) at the collocation pgjrasd
substituting and the second derivatigéwith its expression one gets

Ny
S AA G —ogiitb + D> di¢kei= fij,

kez keZ 1=0
0<i<Ny—1,0<j <Ny, (35
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wheregy j = ¢k (yj), and f; j = f (X, ¥i). Replacing derivativgy’ by it expression in the
boundary conditions (31) and (32) one gets respectively

NY
Y denpik+BY D> didieik=0"(%,—1), 0<i<N—1 (36)

kez kez 1=0

and

Ny
> drogik+ B Y Y dldagik=9"(x. 1, 0<i=<N-1 (37

kez kezZ 1=0

Now, because of the hypothesis of periodicity in thdirection, the coefficients; ; are
periodic inthe firstindex, the period length beiNg, i.e.,¢i yn, ; = ¢i.j (cf. Amaratunga and
Williams [4]). Taking into account this periodicity, the set of equations (35) constitutes
Ny x (Ny + 1) linear system for the unknowrs j. Then eliminating the boundary values
{#1.0}o<i <n,—1 @nd{¢i N, }o<i<n,—1 IN (35) using the boundary conditions (36) and (37), we
obtain anN, x (Ny — 1) system which can be put into the matrix form

D5 @+ ®Dy, —0d = f, (38)
where the matrix® is defined as
Dy j = Dy j, O0<k<Ny—1,1<j<Ny—-1 (39)

The operatoD5 , is the approximation of the second order derivative in the wavelet colloc
tion method. Itis a circulant operator with kernef® = 47(0, 7, ..., ¢}_5,0...,0). The
operatorD; y is the discrete approximation of the second order derivative in the collocati
Chebychev method when boundary conditions are included. The right hanB sid&8)
contains the forcing term in the physical space and all the terms arising from the eliminat
of the boundary values.

3.1.2. The wavelet Galerkin/collocation Chebychev methédthe Galerkin method,
Eq. (26) is projected onto the wavelet space using the basis functions as test functions
this we multiply both sides of (26) by(z — i) and integrate oveR

4JZ¢k<y)/R<p“<z—k)go(z—i)dz+ Z{qbﬁ(y)—a}/Rgo<z—k)go<z—i)dz

kez kez
=> f“k/<p(z—k)<p(z—i)dz
kez R
Using the orthogonality conditionﬁe @(z—K)p(z—1)dz=4j, one gets
D Hh)Qi o+ () —opiyy =1, ez (40)
kez

where the connection coefficierfs_x are defined by

Qi = / o'z~ Kp(z—1)dz (41)
R



A MIXED SPECTRAL/WAVELET METHOD 305

The method for computing these coefficients was presented in eatb [15]. The set
of equations (40) form a system of the second order ordinary differential equations for
coefficientsp,. Boundary conditions for Egs. (40) are deduced from the boundary conditic
(27) and (28). For this we multiply again both sides of (27) and (28) respectivelydyi)
and take the integral ovét to get respectively

a (- +B (D=6, i€z (42)
and
arpi (D) + prg/(L) =G, ez (43)

The system (40), together with the boundary conditions (42) and (43), allows the dete
nation of the coefficientgy.

Here too, the discretisation in the non-periodic direction makes use of the Chebyt
collocation method. The interval{L, 1] is discretised into the collocation pointg,
i=0,..., Ny, where they;’s are defined by (33). Then writing (40) at these points one ge

Ny
3 Qi+ Y dPba—ogij=1 ;. 0<i<N-10<]j=N, (49
kez j=0

wheregi j = i (v)), fi ;= fi(yp.
In a similar way we replacg’ by its expression in the boundary conditions (42) and (4:
to get respectively

Ny
a gin + B Y A g =0y, O0=<i=<N--1 (45)
1=0
and
Ny
apdiot B D A0 =05, 0<i=<N—1 (46)

1=0

Again we use the periodicity condition for the coefficiegits in the first direction to reduce
the system (44) into a system of ordéy x (Ny +1). Then eliminating the boundary values
{#1.0}o<i<n,—1 and{ei n, }o<i<n,—1 IN (44) using (45) and (46), we reduce the system to
Ny x (Ny — 1) system which in matrix form reads

DY@+ ®Dy, —0d = F. (47)

The matrixD3 , is the matrix of the second derivative in the wavelet Galerkin method. |
also a circulant matrix whose kernel (i.e., the first column of the matrix) is given by

KP =(0.9Q1.....2u20....0.2 n.....Q2 1" (48)

The matrixD; y is defined as before. The right hand skleontains the forcing term in the
wavelet space and the quantities arising from the elimination of the boundary values.
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To invert the systems (38) and (48) we first diagonalise the m@tsix. The diago-
nalisation technique is commonly associated with the spectral Chebychev approxima
for solving the Helmholtz problem (Haidvogel and Zang [14]; Haldenwangl. [13];
Ehrenstein and Peyret [12]).

It is known (Gottlieb and Lustman [16]) that the eigenvalues of the opefatpare real
negative and distinct. Thus there exists an opeiéitsuch that

Dy, =SAS (49)
A is a diagonal matrix whose entries are the eigenvalye$ < j < Ny, — 1, of Dy y.

Let us consider the case of the WC/CC method. Multiplying on the right on the ba
sides of (38) bys we get

D5 P+ PA—0d =F, (50)
where
d=dS, F=FS. (51)
Now if we set
éu>::(éai“..,éhh...,éN“)‘ and ﬁu)::(ﬁQj“..,ﬁLb...,ﬁNm)‘
(52)

then the system (50) splits intd, — 1 one dimensional Helmholtz problems
(DS, — (@ =AI]®g=Fg.  1<j<Ny—-1 (53)

In the case of the WG/CC method, applying the same process will result in a system sin
to (53) with matrixD3, in place of DS, andF j, instead off j, on the right hand side.
The systems (53) are easily solved by resorting to FFTs. Brieflijlet D5 , — (o — )
be the one dimensional Helmholtz operator. Thgris a circulant operator and the system
(53) may be put in a convolution form
K,

J

x D)) = F(), (54)

where the kerneKy; is the first column of the operatdt;. Then taking the Fourier
transform of (54) one gets

Fi(Kny) - Fu(®))) = Fi(Fj))- (55)

The wavelet coefficients in the Fourier spak':g&a(j)) can be eliminated from (55) allowing
one to work only with the Fourier coefficients of quantities in the physical space. For i
we notice first the relations (22) and (23) are also valid&SQ{) and its Fourier spectrum
F(®(j)). Thus substituting in (55Fk(®j,) with its expressioFi (U j,)/Fk(K,) we get

Fi(Kg,) - F(U ) = F(Fay), (56)
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where]-‘k(KﬁJ) = F(Kn,)/F(K,). The quantitieSFk(U(,—)) are the Fourier coefficients
of the vectolJ j), which is obtained from the matrly of the physical values after agplying
the process (51) and (52). In the WG/CC method both coefficigit®,j,) andFi(F (j))
have to be eliminated. It results then in a system analogous to (567-"\(\6&1,9“ ) = Fk(Kn;)

in place ofj’-‘k(Kﬁj ).

Remark. For Neumann boundary conditions, one eigenvalue in the spectrdm pf
is equal to 0. Thus in the case of the Poisson equdtioa 0) with Neumann boundary
conditions, the first coefficiento(Ky;) in the Fourier spectrum oKy, is zero in both
the WC/CC and WG/CC method. In order to avoid a division by zero in (56), we .
Fo(Ujy) =0.

4. SOLUTION METHOD FOR THE STOKES-LIKE PROBLEM

Inthis section, we present the numerical method for solving the stationary Stokes prol
(12)—(13) with boundary conditions (10)—(11) and periodicity in the first direction. F
simplicity of notation we drop the superscript 1 on the variables and rewrite the problen
(12)—(13) as

Vw—ow = f in D (57)
Vi +w=0 inD (58)

together with boundary conditions

Y=g, onT (59)
dyy =h, onl (60)

and periodicity conditions in the direction ®f The domainD and the confined boundary
I' are defined by (6) and (7), respectively. As was pointed out earlier, the main d
culty in solving problem (57)—(60) arises from the lack of boundary conditions for t
vorticity while 2 boundary conditions are prescribed for the stream function.

To solve the above problem we look for Dirichlet boundary conditjorm « such that
if a pair of functions(w, ¥) which are periodic irx is a solution of

Vi —ow = f, in D
{ W=, onl’ (61)
and
VY +w=0, inD
{ ¥ =g, onTl (62)

then the function) satisfies the Neumann boundary condition (60). This will be done |
resorting to the influence matrix method.
We first discretise the domaib and the boundary into collocation points

DCZ{(XIvyJ)7O§| SNX_la]-SJSNy}
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and

and letNr be the cardinality of'.: Nf = 27+1. The essence of the influence matrix methoc
lies in the superposition principle for linear problems. We are looking for the pair functio
(w, ¥) in the form

(@, ¥) = @, ¥) + im@j, Vi), (63)
=1
where(&, v/) is a solution of
{vz@_agzg Lnntr)i (64)
(g e

and for 1< j < Nr each pair of functiongw;j, w_,-) is associated with a poing; on the
boundaryl'; and is defined by the homogeneous problem

Vwj —owj =0 in D¢
— 66
{ wj(Pr) = djk onTIc (66)
V2yj+w; =0  inD.
{ Y =0 onlc (67)

such that by construction, the functiomsandys considered in the decomposed form (63)
are solutions of Egs. (57) and (58) and in addition the functfogatisfies the Dirichlet
boundary conditions (59). The coefficients are then determined by demanding that the
functiony satisfies the Neumann boundary conditions (60). By writing this condition ¢
¥ considered in the form (63) we get

Nr
> 1oy (p) = h(pe) — dy (po). (68)
j=1
This constitutes a system df equations for theN coefficientsu, and the system may
be put into the matrix form

MO =R, (69)
where® = (uo, ..., ii, . - ., un;)'. The capacitance matrixt and the right hand side of
(69) are defined by

Mij =d0;(p),  Ric=h(p) — ¥ (po). (70)

Thus the solution of the problem amounts to solving a series of Helmholtz and Pois:
problems with periodic and Dirichlet boundary conditions. The numerical resolution
these problems is done either by the WC/CC or the WG/CC method presented in Sectic
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5. NUMERICAL RESULTS

5.1. Numerical Results for the Helmholtz Problem

We present here the numerical results obtained by applying the previous metho
solving the Helmholtz equation. The methods are validated against the following analy
solution

Uex(X, y) = (1 — y?)2 et gl50x—1/27, (71)

The forcing term in Egs. (14)—(16) is obtained from the solution (71). Various numeri
tests have been conducted by changing the degree of the Daubechies WMWagelktthe
numberJ of the scale. The number of collocation in thelirection is kept constant and large
enough(Ny = 24) so that the error in the wavelet approximation is greater than the er
in the Chebychev approximation. The results obtained by using various kinds of boun
conditions are similar. Thus we present only the results obtained with Dirichlet bounc
conditions: i.e., by taking_ =ay =1 andf_ =8, =0in (15)—(16).

Tables I and Il show the relative pointwise error on the numerical solution by the WC/
and WG/CC methods, respectively. It can be seen that for small degree of the Daub:
scaling function, the results obtained by the WC/CC method are poor (Table I). The
vergence of the error is too slow. On the other hand, good decrease of the error is obs
even for small degree of the scaling function when the WG/CC method is used (Table
This is normal since in the WC/CC one needs the basis functions to be sufficiently rec
while in the WG/CC one asks only the basis functions to belohng'tR). The regularity of
the Daubechies scaling function increases with its degreelNFefl 4 the basis functions
are at least irC?(R) (cf. Daubechies [1]). It can be seen in Tables | and Il that when t|
degree is taken large enough to ensure sufficient regularity for the scaling function,
decrease of the error in both methods is comparable to that usually observed in spe
methods.

TABLE |
Pointwise Error in the WC/CC Solution of the Helmholtz Problem with Dirichlet
Boundary Conditions, (a)o =0, (b) o = 1000

J 5 6 7 8 9
8 (a) 5.224x 107! 2.378x 10! 9.839x 1072 2.975x 1072 7.957x 1073
(b) 4.914x 101 1.840x 10t 7.626x 1072 2.300x 1072 6.154x 1078
10 (@ 8.563 1072 1.622x 1072 2.298x 1073 2.918x 10 3.770x 10°°
(b) 4.410x 102 8.235x 1073 1.151x 1073 1.467x 10°* 1.863x 10°°
12 (&) 5.27% 1072 5.375x 1073 3.528x 10™* 2.217x 10°° 1.289x 10°¢
(b) 2.735x 1072 2.892x 1073 1.926x 10* 1.267x 10°° 7.413x 1077
14 (@) 2.50% 1072 1.181x 1073 3.950x 10°° 1.261x 10°° 3.965x 1078
(b) 1.344x 1072 7.083x 1074 2.390x 10°° 7.634x 1077 2.400x 10°®
16 @ 7.730< 1073 2.383x 10 4.460x 1076 7.406x 1078 2.209x 10°°
(b) 4.314x 1073 1.478x 10* 2.834x 108 4.680x 108 9.737x 10°%°
18 (a) 1.156¢< 1072 1.580x 10°° 1.785x 1070 1.583x 10°° 4.372x 1071

(b) 7.577x 1074 1.017x 10°° 1.199x 1077 1.065x 10710 9.380x 1072
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TABLE Il
Pointwise Error in the WG/CC Solution to the Helmholtz Problem with Dirichlet
Boundary Conditions, (a)o =0, (b) o = 1000

J 5 6 7 8 9
6 (a) 2.164x 1072 2.061x 1078 1.422x 10°* 9.084x 10°° 5.698x 1077
(b) 1.133x 1072 1.111x 1073 7.754x 10°° 4.969x 1076 3.124x 1077
8 (@ 4.017x 1073 1.159x 104 2.114x 10°° 3.297x 10°® 6.108x 10°°
(b) 2.384x 107 7.231x 10°° 1.338x 10°¢ 2.181x 10°® 3.093x 10710
10 (a) 1.13% 1073 1.093x 10°° 5.397x 10°® 9.430x 107 3.398x 1071
(b) 7.347x 1074 7.467x 10°° 3.760x 1078 1.467x 1071° 8.124x 107
12 (a) 4.088< 10 1.386x 10°° 2.624x 10°° 7.384x 10°%° 8.671x 107
(b) 2.795x 1074 1.006x 10°° 1.564x 10°° 1.580x 10710 1.522x 10710
14 (@ 1.724¢ 1074 2.161x 1077 3.381x 107 1.226x 10°° 4.978x 107°
(b) 1.229x 104 1.638x 1077 1.089x 1072 1.226x 10°° 4.605x 10711

5.2. Numerical Results for the Stationary Stokes-like Problem

We present the numerical results obtained using the influence matrix method for
solution of the stationary Stokes problem. The following analytical solution is consider
to validate the method

Yex(X, y) = (L— y?)2 ety eS02 Qo = V2 (72)

which satisfies the no-slip conditions énh(i.e.,h=g=0 in (59) and (60)). The forcing
term in (57) is deduced from the analytical solution (72).

Tables IIl and IV show the condition number of the capacitance matrix in the WC/C
and WG/CC methods, respectively. It can be seen that the condition number deterior
with decreasing scales but is improved by increasing the degree of regularity of the sca
function. However, the conditioning of the capacitance matrix doesn’t seem to influer
too much the numerical results. In the WC/CC method the degree of the scaling func
is taken large enough to ensure a minimum of regularity. Tables V and VI, VII and VI
show the pointwise errors on the vorticity function in the WC/CC and WG/CC methoc
respectively. The numerical results are obtained for 2 values of the parametdue 10
corresponding to a large time step and value 1000 corresponding to a small time step it

TABLE IlI
Condition Number of the Capacitance Matrix in the WC/CC Method, (a) o =1, (b) o = 1000

J 4 5 6 7 8
12 (&) 1.091x 102 3.548x 1072 4.755x 1074 3.985x 1075 2.532x 10°°
(b) 2.128x 107t 7.083x 1072 1.059x 1072 9.944x 10* 6.097x 10°°
14 (@) 1.332< 10?2 4.830x 1073 9.147x 10* 9.081x 10°° 5.978x 1076
(b) 2.666x 107t 1.119x 10t 2.202x 1072 2.154x 10°° 1.534x 107
16 (@ 1.529% 102 6.333x 1073 1.183x 1073 1.245x 1074 8.828x 1076
b 2.960x 10t 1.292x 10! 2.856x 1072 2.960x 1073 2.152x 10*
(
18 (a) 1.965¢ 102 8.476x 1072 3.208x 1072 1.480x 1074 1.082x 10°°

(b) 2.980x 107t 1.383x 107! 1.398x 1072 3.484x 1073 2.575x 10
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TABLE IV
Condition Number of the Capacitance Matrix in the WG/CC Method, (a) o =1, (b) o = 1000

J 4 5 6 7 8

6 (@) 9.948x 1073 3.888x 1073 6.074x 10~ 5.322x 10°° 1.321x 10°®
(b) 2.062x 10 8.592x 1072 1.429x 1072 1.272x 1073 3.059x 10°°

8 (a) 1.470x 1072 4.897x 1073 8.786x 10~ 8.096x 107° 6.356x 10°°

(b) 2.657x 10t 1.064x 1071 2.024x 1072 1.940x 1073 1.372x 1074

12 (@ 1.544x< 1072 5.355x 1073 1.022x 1073 9.747x 10°° 7.784x 10°°

(b) 2.787x 10t 1.162x 107t 2.248x 1072 2.335x 1078 1.672x 107
TABLE V

Pointwise Error on w in the Solution of the Stationary Stokes Problem,
with the WC/CC Method, (a) o =0, (b) o =1000

J 5 6 7 8
12 (€] 2.129%< 10 2.534x 1072 1.734x 1073 1.097x 10°*
(b) 1.281x 10! 1.592x 1072 1.099x 10°° 6.979x 10°°
14 (a) 1.074x 107t 7.076x 10°° 2.388x 10 7.631x 10°°
(b) 6.787x 102 4.728x 1073 7.891x 10°° 5.149% 10°°
16 (a) 3.964x 1072 1.535x 10°° 3.031x 10°° 5.047x 1077
(b) 2.411x 1072 1.047x 10°° 2.104x 10°° 1.318x 1077
18 (@) 8.573 1073 1.099x 10* 1.391x 10°® 1.252x 1078
(b) 6.065x 1073 7.655x 10°° 9.979x 1077 9.045x 107°
TABLE VI

Pointwise Error on % in the Solution of the Stationary Stokes Problem,
with the WC/CC Method, (a) o =0, (b) o = 1000

J 5 6 7 8
12 @ 9.995¢ 1072 1.701x 1072 7.050x 10 4.426x 107°
(b) 7.630x 102 8.240x 1073 5.451x 10~ 3.429% 10°°
14 (a) 5.185¢ 1072 2.374x 1078 7.891x 10°° 2.519% 10°°
(b) 3.891x 1072 1.898x 10°° 6.307x 10°° 2.022x 10°°
16 (a) 1.62% 102 4.776x 104 8.935x 10°° 1.484x 1077
(b) 1.257x 1072 3.870x 10 7.295% 10°° 2.470x 10°°
18 (@ 2.312 1073 3.156x 10°° 3.568x 1077 3.161x 10°°

(b) 1.917x 1073 2.595% 10°° 2.981x 1077 2.645x 10°°
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TABLE VII
Pointwise Error on w in the Solution of the Stationary Stokes Problem,
with the WG/CC, (a) o =0, (b) o =1000

J 5 6 7 8
6 (@) 8.433x 1072 9.602x 1072 6.936x 10 4.473x 10°°
(b) 5.273x 1072 6.058x 1072 4.400% 1074 2.844x 10°°
8 (@) 2.155¢ 1072 7.525%x 104 1.438x 10°° 2.361x 1077
(b) 1.426x 1072 2.310x 10 9.990x 1076 1.646x 1077
10 (a) 7.580< 10°° 9.013x 10°° 4.727x 1077 1.663x 10°°
(b) 5.272x 1073 6.569x 10~° 3.494x 1077 3.586x 107
12 (a) 3.204x< 10°° 1.378x 10°° 2.114x 10°® 8.555x 10710
(b) 2.315x 1073 1.048x 10°° 3.065% 1078 3.586x 1071
14 (a) 1.53% 1073 2.507x 10°° 1.308x 10°° 2.079x 1070
(b) 1.145x 1078 1.970x 10°° 9.481x 1071 2.079x 107

temporal discretisation. The results don’t depend too much on the valuéisfin the case
of the Helmholtz problem, a spectral accuracy is reached provided the scaling functio
sufficiently regular.

5.3. Numerical Results for the Instationary Stokes Problem

We present here the numerical results obtained for the unsteady Stokes problem. /
discretising the problem (1)—(4) using the scheme (8)—(11), the resulting stationary Stol
like problems is solved at each time step by the methods previously presented. The algor
is first validated against the analytical solution

Yex(X, Y, 1) = cogt) cog2nX) (1 — y?)? €Y, wex= —Vex. (73)

Figure 1 shows the results obtained for the stream function. The results for the vorticity
similar. The number of collocation points in tlyedirection is stillNy = 24. These results
are obtained by taking the degree of the scaling function tdNke8 and the scale of
resolution inx is J =5 (i.e., Nx = 32) in the case of the WG/CC method aNd=12 and

TABLE VI
Pointwise Error on 4 in the Solution of the Stationary Stokes Problem,
with the WG/CC Method, (a) o =0, (b) o =1000

J 5 6 7 8
6 (@) 4.060x 1072 3.141x 1073 2.836x 10 1.813x 10°°
(b) 3.124x 102 4.074x 1073 2.192x 10 1.403x 10°°
8 (a) 7.795¢ 1073 5.166x 10~ 4.223x 1076 6.760x 1078
(b) 6.232x 1073 1.877x 107 3.449% 1076 5.477x 1078
10 (a) 2.234¢ 1073 2.183x 10°° 1.076x 1077 7.543x 1071
(b) 1.841x 1073 1.837x 10°° 9.150x 1078 8.817x 10°%°
12 (@ 8.060x 10~ 2.769x 10°° 5.224x 10°° 1.419x 10°°
(b) 6.793x 104 2.389x 106 4.178x 10°° 8.817x 10°1°
14 (a) 3.40% 1074 4.320x 1077 3.989x 1071 7.556x 1071

(b) 2.921x 10°* 3.797x 1077 3.449x 1010 1.156x 1071
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FIG. 1. Maximum of the pointwise error in time af with respect to the time stept, with the WC/CC
method (circles) and the WG/CC method (triangles).
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J =6 for the WC/CC method. These choices of spatial parameters are such that the sp
error is always smaller than the error in time. Clearly the results in Fig. 1 shoad?)
decrease of the error. A good stability of the method is also observed.

6. CONCLUSION

A mixed wavelet/spectral Chebychev method has been developed for solving the
Stokes equations with periodicity condition in one direction. In the periodic direction tl
approximation is done on the basis of the translates and dilations of the Daubechies sc
function. The discretistion is done either in the wavelet collocation method or the wave
galerkin method. Then in the non-periodic direction the collocation Chebychev methoc
used. A capacitance matrix method has been implemented to handle the boundary c
tions. This leads to a series of Helmholtz systems which are efficiently inverted using
following ingredients:

e Diagonalisation in the non-periodic direction
e FFTs for inverting the operators in the wavelet space.

Numerical tests conducted on analytical solutions show that the method is stable and s
trally accurate with regard to the degree of regularity of the Daubechies scaling function."
method can be extended to the Navier—Stokes equations by using an appropriate treat
of the non-linear terms.
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